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What is POD , what for ?

Basically : designing a sparse representation of a function f(x,t)

f(x,t)= f(x,t)= > b(t)D,(t)
N " Modes

An infinity de choices !

But, the POD approach rely on :
The choice of the order of variable
The choice of a product of spaces HxV
H Hilbert space with scalar product(.,.) , V vector space with a mean .
The demand that the modes @ are orthogonal
The meaning of “best” representation:
mean (in V) of the norm (in H) of the residual %Hf — f” é

Applications
Compression of data (vectors), representation of fields, identification of structures in vector fields
Construction of reduced models by (spatial) projection of the initial PDE onto span {®;}
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Equivalent approaches to the POD

Consider the case N=1 (one mode POD)

. v, f)°H
min min ay — f ® = %<

YeH aeV %” | % < ekl (¥,'¥)
(P,¥) =1

a) Suppose W=® is fixed in the initial formulation

min Jla¥ - 5 < H(b¥ - f,¥)saj=0vsaev
aeV

b) Using this result the initial formulation is : \Pmljln %H(‘P,U‘P—f\r%
S
(P,¥)=1
E SRR i (2 (2, £) P 1)y

]
(£ > (w ) -2(W, (P, )
:—%CP f %H:ste
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One mode POD

Consider the case N=1 (one mode POD) f =(f,®)® ,® =argmaxG , (®,®) =1
G(¥)=H(¥, f )

Stationarity conditions of the Lagrangian L(‘¥, ) = %(‘P f >2§— y((‘P \P> —1)

{%U’q’)(f’é‘m%—i(@,&):o VP e H
(@, @) =1

Leads to the definition of the operator H—->H
Y AY = (f,9)f

B B ® is the eigenvector of A
— AD=AD <(D’ (D> =1 } with greatest eigenvalue
G(®) = (AD, D)= 1 é”f_ f\@:@(f, B2
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Examples of A operators

H space of square integrable scalar fields on a domain Q : (u,v) = jQu(x)v(x)dQ
1
T time domain with averaging operator g = ;L g(t)dt
AD = jQ R(X, y)D(y)dy =AD(x) with R(X, y) = % jT u(x,t)u(y,t)dt

R is the (space) correlation function.

H space of square integrable scalar functions on a time domain D (u,v) = J’ u(t)v(t)dt
D

T space of integrable functions on a space domain €, spatial averaging operator ¢ = IQ g(x)dQ

AD :jDR(t,t')(D(t)dt':ACD(t) with R(t,t") :jQu(x,t)u(x,t')dx
R is the (time) correlation function.

H space of square integrable scalar fields on a domain Q : (uvy=| L U)v(x)dQ

E probabilistic space, expectation operator associated to the probability measure dp g = J gdp

AD = [ R(x, y)®(y)dy =A®(x) with R(x,y) = [ u(x, pu(y, p)dp
R is the (space) correlation function
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Main results for N modes POD

- N
f - Z< f ’(D|>CD|
For N modes POD, same derivation AD, = A ':Il, (®,®,)=3,
except the supplementary condition A st greatest eigenvalues
of orthogonality of modes .
f—f, A
r-7FE- >

Existence of the eigensystem is guaranteed by the spectral theory of Hilbert-Schmidt operators
(as Ais HS)

The kernels of A are the correlation operators, they benefit from the decomposition
R(x,x") = Zﬂ’lq)i(x)q)i(x')
i=1
The r-decomposition is exact if the operator's spectrum is zero beyond the rank r

I - -0
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SVD : an alternative way for the POD in finite dimension

Suppose we have n snapshots of m dimension vectors [ f ]

oL g

E_ £z f2 . . nxm Matrix of snapshots

RARR AR A
n m 2
One mode POD of [ f] max G(p)= % (p, f 2% (Z fjaq)aj
¢eIR j=1 \ o=t
ZWW 1 ﬁ

Ml =40 M =2 1 or (M]=[F][F]

=1

SVD of matrix[ F ]= U2V,

M =[F][F] =(UzV')(VEU')=USVVEU' =USU' = |4 =0, [®]=[U}]

Eckart-Young theorem  min |A=X]|_ . Anxm
X nxm, rank X <Kk
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SVD in practice

Time Hidden Time
‘+—— —r -

N

Amplitudes Dymamics

Hidden

Interpretation of SVD on snapshots
for spaces modes

Space
Space

Data/Snapshots Modes
Compression of storage for aimage nxn,  ~ _ l+n,+n, " Y 6~ 2k
pixels when the first k modes are retained ‘ nn, nn, “

Quality factor - N max N mex
(for N max modes computed) E(N)=1- ( > /ﬁj / ( > /Iij

i=N+1 i=1
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Example 1: Image compression

Two images |, and |,, described by a matrix M
of “gray level h(i,j) at pixel (i,j)” respectively
200x300 and 128

a0
B

Il b

“1Singular values

Rank 6 representation Original image /> Rank 6 representation

& #m—
¥

™

Rank 12 representation Rank 20 representation Rank 12 representation Rank 20 representation
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Example 2: Patterns recognition

Because of an energetic interpretation of the scalar product in H

(energy dominanymodes in a flow around a airfoil

|dentification o

instantaneous mode 1 (5.8%) mode 3 (3.6%)
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l. - Bregman POD for quadratic generating functions

If Jis quadratic D, (91, 62) =J (el) —J (ez) — <VJ (ez)’ e, — ez>
-
DJ (eliez):\](el—ez) DJ (el,ez)=<Q€1,62>:<qe1’qez> q:Q1/2

D, defines a norm and a scalar1 product (Mahalanobis distlance in IR")
Ihlly = Do(n.0)=Q(h) . {h.g)y == (Ih+ gl ~lInl; ~lal; )= > (Qh + ) ~Q() ~Q(g))

POD with Bregman divergence generated by quadratic function J,

FN ZN: < f (Di> ® N first orthonormlall eigenmodes and eigenvalues
= of self-adjoint compact operator A
%H | H2 zoo: A:H-—->H
R0 H= > 4 _
o= 24 ¥ AV =H(F,¥), f:
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Il. - POD for u-similar Bregman divergence

g-similar Bregman divergences
A Bregman divergence D; on a domain K — IR" is y-similar for some x > 0 if there exists
a nxn positive definite matrix Q such that, for each pair (e, e,) belonging to K?

,UDQ(evez) <D, (e.e,) < DQ(el’eZ) V(e,e,)e K*

,UQ(el_ez)S DJ (el’eZ)SQ(el_ez) ||h||<22 - DQ(h’O)
\
SRRV WE N (RAUEED W
i=N+1 i=N+1
N
POD with z-similar Bregman divergence
EN - N first orthonormal eigenmodes and eigenvalues
fo' = ,Zzlx f. @) @ of self-adjoint compact operator A
12 o A:H—>H
%Hf—fNHQézi_%ﬂ ¥ AV =H(F,¥), f:
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lll. - POD with general Bregman divergence

POD strongly rely on scalar products and norms at various steps of derivation

1- Define a pseudo-norm and pseudo-scalar product form Bregman divergence

Define a 2 _ Useasymmetic  (h o) = < (Ih+al? —IhP Il
pseudo-norm HhHJ = D) polarization formula < 'g>Q Z(H +gH H H HqH)

2- Revisit all the steps in order to decide when substituting the scalar products and norms
with corresponding Bregman induced pseudo-*

BD do not enjoy » No hope that we have equivalence between the two
the triangle inequality formulations of POD

W, f)
min  min %Ha‘l’—f”j% cD:argmax%< >J%
YeH aeV YeH <\P,\P>
(v, ¥)=1
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IV. - POD with general Bregman divergence

POD strongly rely on scalar products and norms at various steps of derivation

1- Define a pseudo-norm and pseudo-scalar product form Bregman divergence

Divergence Squared norm || . H_F Scalar product ( .. > D,

Extended 1

Bregman D,(e,0) =J(e) <e,f>D :—(J(e+f,_0)—D(e,O)—D(f,O))
divergence 72

Symmetric 1
Bregman M} (. ) =5 (Ve et f) - (VI(@.e)~(VI(). 1))

divergence

2- We choose

To keep the orthogonality of the modes ®@;
in H with its own scalar product

(@,@,)=4,

To adopt as objective of the POD  f, =(f,®)®d , ® = argmin %H( f, )% - f\\ﬁ: G('P)
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V. - POD with general Bregman divergence

Bregman divergence orthogonal decomposition - BDOD

The BDOD of order N f (x)of a function f(x,t) defined on the product HXE where H is a
Hilbert space of functions on a spatial domain Q and E a time domain, with {.,.) the scalar
product of Hand - the time averaging function on E, is

N

i =>(f,®)0,

i=1
where the functions ®; are sequentially determined by the minimization problem :
i-1
O, = arg min J{ <f,CDj>CDj+<f,‘I’>‘P—f}
j=1

¥YeH,(¥,¥)=1 =
(¢.@,)=0j=1i-1

and J is the convex generating function of the Bregman divergence D;,
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V. - POD with general Bregman divergence

Characterization of Bregman divergence orthogonal decomposition
Using an appropriate Lagrangian One mode Bregman POD

(VI[(f. @)@ f],(f,0)D+(f, )0V ) =A(D,0¥) V¥ eH

<(D' CD> =1 A form of eigenproblem

Eliminating the Lagrange multiplier

2H(f,0)(Vd,, ®)=1 {%{@,fxw((@,fmf),<2f,%(cp,f)q>fﬁ>q>+ f =0

(©,®) =1

More work to be done !
1- Repeat sequentially for N-decomposition : Better algorithm ?

2- POD on Product space for multiphysics applications
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Thanks for your attention
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